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The concept of so-called global symmetry of percolation models is discussed and extended to multicolored
models. An integral equation is obtained, which determines the partial percolation probaBilifi@ssites of
color a. This equation is applied to a polydisperse particulate composite: a mixture of condiaftiedptive
fractionx,,) and nonconducting spheres with distributions of sizgER) andn;(R), respectively. We find the
probability P for a conducting particle of radiuR to belong to the percolation cluster as a functiox,gfand
a functional ofn,(R") andn;(R’). The percolation thresholdis shown to decrease with increasing dispersion
A of particle sizes. A simple lawm=1/(3 1+ (A/4)]) is obtained in the range of moderate dispersions. The
theory is applicable also to a mixture of electronic and ionic conductors.
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[. INTRODUCTION influence of this dispersion on the properties of the system
(see, howeveif8,10]). Should one try to suppress the disper-
The present work is motivated by the need for under-sion in order to improve the performance of the composite
standing the properties of technologically important polydis-material, or would the size dispersion facilitate it? How can
perse composite materialsee[1]), produced by sintering of one quantify the effects of dispersion?
mixtures of roughly spherical granules. Their structure can The present paper mostly addresses these questions. We
be reasonably well reconstructed in a computer simulatioffOPOSe an approximate analytical approach to the problem,

(see[2] and references thergirThe individual granules can Pased on certain approximate symmetries. We demonstrate

be made of different materials; in this paper we will concen-that moderate dispersion improves the conditions for perco-

trate on two-component mixtures with granules of two sorts.Jat'on' and find explicit dependences of the percolation

metallic (conductors and insulators(or ionic conductors threshold and percolation probability on the dispersion. We

. . . Iso give a qualitative explanation of these dependences.
Two-component conducting composite ceramics have a vadso gve aq P . P )
) A ) . : . Polydisperse composite materials are complex systems; a
field of application in electronics, electrical engineering, ca-

. . . reliable quantitative characterization of their percolative

talysis, and electrical power generatidng]. . roperties is feasible only with the aid of massive numerical

Due to the stochastic character of the formation processinjation. All the characteristics of the system anaction-
the' grains in a composne' mater!al do not form a regulara|sof the grain-size distribution functions,(r ) andn;(r;).
lattice but rather a topologically disordered network, whoserperefore, in order to conduct a comprehensive numerical
density is considerably lower than that of close pack®l  study of the problem, one has first to choose a discrete set of
The physical characteristics of the system are closely relategliz| functions forny,(r,,) andn;(r;) and then determinéoy
to its statistical geometry. For example, in order to find themeans of numerical simulatidpthe characteristics of the sta-
electrical properties of a two-component metal-insulatorjstical geometry for each choice. This task would require
composite, one has to address the problem of percolatiopoth huge numerical resources and a certain igaiori
through the subnetwork of metal grains. The solution de-about which set of trial functions would be most efficient. If
pends both on the details of the sintering process and on th@e want to optimize the structure of the composite for a
distributionsnp,(r,,) andn;(r;) of the radiir,, andr; of the  certain goal, we will then need to extend the results to the
metal and insulating grains, respectively. In the present pap&ontinuous space of distributions. All these complications
we adopt a standard model for sinterifgge[2,4,5) and  make the problem difficult foab initio numerical study and
concentrate on the dependence of the percolative propertigsiggest the need for some approximate analytical frame-
of the network on the size distribution of grains. work. Certainly,ab initio analytical treatment of the problem

An ideal case of a binary composite material, where granis impossible(it is impossible even for much simpler sys-
ules of the same sort have the same size, sonpét,) tems. Instead, we propose a semiphenomenological proce-
=0(rm—Ry) and ni(r;)=48(r;—R;), has been extensively dure of finding the properties of a certain class of systems
studied both experimentallys] and numerically{7—-11]; the  (characterized by the distribution functions of the ragiio-
dependence of the physical properties on the asymmetry paided these properties are known for one simple representa-
rameterp=R; /R, is well documented. Still more data are tive of the class—a system of spheres with equal radii. This
available for the simplest case of equal-size distributipn ( task turns out to be feasible due to a cert@pproximate
=1)[12-16. symmetry observed in the numerical simulati¢8$

In practice, however, there is always a considerable dis- Although approximate, this symmetry appears to be gen-
persion of the grain sizes. Not much is known about theeral for many percolation models. In its truncated form
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(which we will call “local” ) such symmetry has been known  The paper is organized as follows. In Sec. Il we review
from the early work on percolation theory in the 1960s, andthe local symmetries known for different percolating sys-
it has the following meaning. tems, with the emphasis on the colored topologically disor-
There are various classes of percolation models. EacHlered models, to which class the polydisperse composite ma-
model of a given class is characterized by a set of parametefgrials belong. In Sec. Ill we introduce the concept of global
{u} and undergoes a percolation transition at certain valueSymmetry and demonstrate its existence for cases when the
of these parameters. Within each class there should exist!@cal symmetry exists. Again, the colored models are dis-
certain function of the parameters—the invariantcussed most extensively. The equation of state governing the
I{ u}—which takes, at the percolation transition, the samePartial percolation probabilities for different species is intro-
valuel,, for all the models of the class. This statement byduced and the properties of its solutions are described. In
itself is trivial, as it simply states the existence of the surfaceSec. IV we apply the general methods to particulate compos-
of percolation transitions in the space of paramefgrs The  ites _and flnq 'ghe dependence of the percolation threshold and
nontrivial observation is thdt{ .} strongly depends on only partial densmes pf the_ pgrcollauon cluster on the parameters
a few relevant parameters and is almost independent of afif the particle size distributions. A summary of the main
other—irrelevant—parameters. For example, for latticeesults and a discussion of the limitations of the present
bond-percolation models the invaridrdepends on the prob- theory conclude the paper.
ability of bond formationp, on the coordination numbet,
and on the dimensionality of the lattick but it is approxi- Il. LOCAL SYMMETRIES IN PERCOLATION MODELS:
mately independent of the type of lattice. The “symmetry” is AN OVERVIEW
nothing other than the above approximate independente of _ . .
on certain characteristics of the model. Its accuracy is usually '€ idea of what we call “local symmetry” is by no
of the order of a few percent. Mmeans new, so we start our discussion with a review of dif-

A detailed analysis shows, however, that the above “locaf€"ent types of local symmetry, found in different systems.

symmetry” can actually be extended to a “global symme-

try.” That is the numerical data show that not only is the A. Percolation on a regular lattice

value of [{u} at the percolation threshold approximately in- The local symmetry was first proposed by Domb and
variant, but also the percolation_ probabilPytakes approxi- Sykes[18] (see alsd19,20), who noticed that for all bond-
mately the same values for different models of the classyercolation problems on various regular lattices of a given
provided that these models are charf'ictenzed b)_/ the sa mensionalityd the percolation threshol@,, is, roughly,
values ofl. In other words, each class is characterized by ari‘nversely proportional to the coordination numketin other
invariantfunction R(1). The global symmetry claims that the words, if one considers the average numBerZp of bonds

percolation probability? is a function of a single variable— -onhecting a given site to its neighbors, then the valug of
the invariantl—and this is true within the entire space of 4 he percolation threshol@&,, , is approximately invariant

parameters ..}, not only in the vicinity of the percolation e the entire class of bond-percolation problems of fixed
threshold. This is fulfilled with an accuracy similar to the dimensionality:B.,(d)~d/(d— 1)
Ber .

accuracy of the local symmetry, so that there is no reason to Later, Scher and Zallen[21] proposed a different
use the local symmetry without taking advantage of th%nvariant—the “volume fraction” 9—for the site percola-

broar(]jer global Ipne_. t the dlobal | dtion. It is constructed as follows. One draws identical spheres
L Ie ge?]era|zat|%n of the g oha sym_mec}r)l/) to coloredy g ng all sites of the lattice in such a way that the spheres

models, Where each Speciasis ¢ aractenze y Its own corresponding to neighboring sites touch each other. Then

percolation probabilityP,, is not obvious. It can, however, ne cajcylates the density of packipg: the ratio of the

be accomplished in a similar way as for the local symmetry o olume of all spheres to the entire volume of the lattice.

case in[17], where an approximate criterion was proposedrye jnyarignt is®=ppx, wherex is the probability for a

for percolation in a system with an arbitrary number of dif- given site to be “painted black(if one considers percolation

ferent species—*“colors.” Ir) the present work we general_izevia black sites Thus, ¥ has the meaning of the packing
the arguments of17] to validate the global symmetry. This density for the subsystem of “black spheres” in the above

generalization allows one to find not only the percc’lat'onconstruction. Again, the valud,, of © at the percolation

t_hreshol_d, bUt. a!so the percolgﬂon probability a_md dIStrIbu'threshold is approximately invariant for different lattices of
tion of sites within the percolating cluster over different spe-

) hich is i cant f icati Th h rori the same dimensionality.
cies, which 1s important tor applications. 1hese charactens- - g approximate invariance af., andB,, is illustrated

tics can be compared with the results of experiments anﬂ1 Figs. 1a),(b). More details about percolation in regular

numerical simulations. . . . )
. . latti n found in the classical review han n
We should stress that thepproximategeneralized theory I?itrtk(;)ilstri((::i [sze]z ound in the classical review by Shante and

of global symmetry is not devised to describe the delicate
universal behavior of the system near the percolation thresh-
old (critical exponents, ett. It rather claims the ability to
treat a reasonably wide range of complex systems, character- Skal and Shklovskif23] and Pike and Seagg24] intro-
ized by a multitude of parameters, with the help of relativelyduced the invariant for the model of percolation on random
simple universal formulas. sites(also called the “Swiss cheese model;” §@&]). In this

B. Percolation on random sites
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0.50

gested 3,27,28,14,1fthat this system belongs to the class of
B-invariant systems, so that the average numBgf, of
bonds connecting a given metal site to other metal sites is the
invariant. Decisive support for this view came from the work
by Bouvard and Langg9]. They simulated the binary com-

I ] posite system and showed numerically that the onset of per-
030 - 1 colation in the system occurs at the same value of the metal-
] metal coordination numbé,,,,,= B.,~2 for different values

of the parametep=R,,,/R; in the range 1/ p<3. Outside

this range the accuracy of the local symmetry becomes poor.
Hence, it is likely that all binary mixtures with not very
strongly differing sizes of constituent grains obey the local
symmetry with respect to the invariaBt,,.

T T T T T T T T
L square _ triangular (a)
0.45 - =
n kagome
0.40 thoneycomb i

2D lattices

0.35 | -

0.25 4

0.20 1 b
diamond sc cc hcp

0.15 n " z
fce

0.10 2 L " 1 s 1 " 1 " !
2 4 [ 8 10 12

3D lattices

D. Bond-percolation type of symmetry for topologically
disordered site-percolation models
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Both random-packing percolation and random-site perco-
lation demonstrate symmetry described by an invariar® of
type. Why do these manifestly site-percolation systems pos-
I sess symmetry of bond-percolation type? Here one may put
18 | i forward the following qualitative argumentsee[29]). Let
us concentrate on the conducting granules and keep track of
the bonds between them. Due to the random environment
inherent in the topologically disordered lattice, these bonds,
as in the bond-percolation model, are being established
roughly independently of each other. The same arguments
are also applicable to random-site percolation.

L _ This featgre distinguishes the topo_logicallly disorde(ed
site-percolation model from the conventional site-percolation
4 one (where there is a strong correlation between different

FIG. 1. Illustration of local symmetry for percolation models on bonds of a given site and makes it rather similar to bond

different two-(2D) and three-dimension4BD) lattices(after[22]).  Percolation.
Z is the coordination numbefa) Values ofJ, for site percolation;
(b) values ofB.,=Zp,, for bond percolation. E. Colored systems
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problem one considers a medium with randomly placed iden- Thg problgm of constrgctmg the invariant becomes more
tical cavites (random sites usually—but  not complicated if one considers a colored systéme, e.g.,

. . . (,L%%O]), i.e, a system where each site is characterized by a
necessarily—of spherical shape. Percolation occurs when Lrametefor a set of parameters, with a priori probabili-
infinite number of holes overlap, so that one can traveP P ' P P

throughout the system via an infinite labyrinth of connecteonf).sl.?a (Eanfa= %vz/ The_ tr)](k))nd_mg p:Obeib”gy"e" the fer]tci)ab-
cavities. This model is essential for the theory of hoppinga ”dy Paar thor (I) nelgf t?]nng Sies to (,efcon:]hec it )
conductivity in semiconductors; sE26]. It is interesting that pends on the values ot the parametaia: for e Sites
the physical meaning of the invariai for the class of involved. As in the conventional site-bond-percolation prob-

random-site-percolation models appears to be exactly th|<§tm (see[23)), dthe:e are two ((jjlféeredr_];ftypets of d|_sorder:(;chteh
same as for the bond-percolation class: it is the average nu 1les are randomly occupied Dy different Species, an N

ber of holes overlapping with any given one. The local sym- onds betwegn sites are also gstabhshed_rgndomly. An im-
metry is that the value oB at the percolation threshold is portant complication, however, is the nontrivial character of

approximately independent of the shape of the individuafhe Matrix Paar . the bonds are not necessarily -establi-shed
cavity. However, the value dB,,(d) for the class of topo- only between sites of the same color. In tqpologlcally disor-
logically disordered random-site-percolation modds, (d dered systems the picture is further complicated due to fluc-

=2)~4 andB(d=3)~27] differs considerably from that tua':'lr?gsclogstsheo;oggloiggrdgs:t:)?gt.ion roblems is extremel
for bond percolation on regular lattices. P P y

wide: for example, it includes both bond percolation and site
percolation as limiting subclasses. Thus, the general invari-
ant | for the colored percolation clagprovided it exists
Consider a mixture of spheres of two sorts{meta) with must reduce in the two limits tB and ¥, respectively. The
radii R,, andi (insulatoy with radii R;. Since all the me- character of local correlation in these two subclasses is, how-
tallic spheres in such a mixture are identical, one can applgver, very different. Therefore finding a reasonable interpo-
the ideas of local symmetry to this system also. It was sughation betweerB and ¢ is a tough problem: to our knowl-

C. Randomly packed spheres: Binary mixtures

021301-3



ALEXEI S. IOSELEVICH AND ALEXEI A. KORNYSHEV PHYSICAL REVIEW E65 021301

edge, nobody has solved it so far. [Ih7], and also in the Sinceb,, is a matrix, one has yet to propose a procedure for
present paper, we restricted our consideration to the domaiproducing the invarianB (which needs to be a scalasut of
of “bond-percolation-type problems” by postulating that the this matrix. This task turns out to be a nontrivial one. The
invariant for the problem of interest is still related to bond- simplest “naive” version would be just to avera@ over
ing; whether it is true or not for any particular class of sys-the colorsa with certain properly chosen weights. No clear
tems can only be checkeal posteriori However, having in  procedure for choosing these weights has been proposed.
mind the arguments of the previous subsection, one may eXSomead hocprescriptiongsee, e.g/,26]) are logically ques-
pect that the symmetry for topologically disordered colorectionable; furthermore, they work poorly. Why do these at-
systemgsuch as polydisperse two-component mixtunesl tempts fail? Apparently the reason is as follows. Since the
again correspond tB type. sites are not equivalent in the colored problem, the bonds
The choice of bondlike percolation does not yet fix theshould be counted with certain color-dependent weights,
structure of the invariant: the way to introduce the bondingwhich reflect the effective ability of a given neighbor to be
invariantB is not unique; to choose the right one we have tofurther connected to the infinite cluster. And that should al-

invoke additional physical arguments. ready be done when calculatiigy for a fixed colora, not
_ _ only at the stage of averaging it over colors. A self-consistent
1. The bonding matrix prescription for assigning the weights for different colors

Consider an average numbg,, of bonds connecting a Was proposed ifil7]. The key idea is that the weights should

given site of colora to other sites of colom’. It can be reflect the participation of a given color in the infinite perco-
written in the form lation cluster. Certain colors are more likely to be bonded,

therefore their relative representation in the infinite cluster is
Baar=baana . (1)  enhanced, compared to theipriori probability, while some
other colors are bonded less readily, and they should be less
In the case of colored percolation on a regular lattice withrepresented in the infinite cluster. Thus, the probabilities
fixed coordination numbeZ the bonding matrixo does not  n{-®) of finding given species within the infinite cluster de-

depend on the distribution functiam it is simply related to  pend on the structure of the bonding matrix; they should be
the bonding probabilityb,, =Zp,a . In the present paper found self-consistently. _

we are mostly concerned with percolation in topologically —The procedure proposed [ii7] for finding n{®” is based
disordered networks, wheiitself is subject to fluctuations, on the assumption, that, at least in the vicinity of the perco-
so it seems more appealing to introduzg, as a primary lation threshold, the partial percolation probabilify,
characteristic of the system, comprising both fluctuations o= ng'c')/na, i.e., the probability for a given site of colarto
bonding and fluctuations of coordination. It is a tricky point, belong to the infinite cluster of bound sites, depends on one
however. Indeed, in random networks the local coordinatiorsingle parameter, characterizing its average local coordina-
may depend on the coloring of the environméeepecially if ~ tion, namely, on the average numbBf ) of relevant

the “color” reflects the size of a granule occupying the site bonds, defined as those bonds that connect it with an infinite
and thereforeb may itself be a functional of. Such an cluster:

effect of correlation between the bonding matrix and the dis-

tribution function does exist in the system of randomly (i.c)_ (i.c)_

packed spheres with which we are concerned. Fortunately, Ba _g baa Ny, _§ PaaNar Par ©

for not very wide distributiongsuch that relevant radii in the

distribution differ by not more than a factor of & has a  Thus, in[17] it was postulated that

trivial form: the distribution function enters only through _
the average squared grain radigé (see Sec. IY. For P,=W(B{*), (4)
broader distributions the correlations become nontrivial, and
our theory should be considerably modified in this case. wavhere the functiodV(B) is universaland independent cd
have so far not been able to elucidate the character of thed@r @ given class of systems, at least in the vicinity of the
correlations and make necessary modifications. percolation threshold. Note, that, in contrast to &eriori
Thus, the concept of the bonding matrix is meaningfulcolorings of sites, the partial densities of the infinite perco-
and productive for some modelse will call them the bond- lation cluster are strongly correlated, especially near the per-
ing matrix modely while for other models the formulél) ~ colation transition. For example, the probabilhﬁ(l'g'z)(iliz)
does not make much sense, sifcelepends om in some of finding both sites, andi, belonging to the infinite cluster
unknown way. The general approach developed below is efand additionally having colora; anda, does not reduce to
fective only when applied to bonding matrix models. a product ofngl'c') and ng;-). However, by definition, the
nontrivial correlators do not enter the average number of
relevant bond®{-®) and the formula3) is exact. Thus, the
The total average number of bonds for a site of calés  crucial approximation is the assumption ttRt depends ex-
clusively onnt-¢), not on higher correlators, and, moreover,
Ba=> baaNy . (2)  thatitdepends on‘-) only throughB{*) . The solution of
a’ the system of Eq93),(4) gives, in principle, the partial per-

2. Construction of invariant
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colation probabilities?, and the percolation threshold as the that all the amplitudes, simultaneously vanish, &8 ap-

point where allP, simultaneously vanish. proachesB,, from above. However, the critical amplitude
vanishes as a linear function &—B,,, wnile noncritical
amplitudes vanish much faster. Thus, in full accord with the

Near the percolation threshold the percolation probabili-general theory of second order phase transitions, only the
ties are small; therefore the argumds{}®) of the function ~ critical mode survives in the vicinity of the transition. Fi-
W(B(' -C. )) should also be small. In the spirit of the generalnally, we can write the following formula, valid in the vicin-
mean field theory of phase transitions we postulate an andy of the percolation transition surface:
lytic behavior of the functioW(B) at smallB: )

Wafn, b}

Pa{n.b}~C{n,b}——=— I (B{n,b}—Bc)”

3. The percolation threshold

B
W(B)=B——const><Bz+~-~. (5)
cr

The coefficient in front of the quadratic term should be nega- 0(B{n,b} ~Bey), ©)
tive to ensure that the percolation exists #®r B, and is
absent forB<B.,. The percolation criterion can easily be
found as the condition that Eg&3),(4) have a nontrival so-
lution. As a result, this criterion reads

whereg is the exponent for the infinite cluster density. If the
above analysisbased on the assumption of an analytic be-
havior of W(B)] is taken seriously, the critical exponefit
=1, which is the well known mean field result. Fluctuations
B{ﬁ,6}=Bcr, 6) strong]y renorma}lize the amplitudg in the Cr.itical region:
changing the critical exponepi. At the same time, the criti-
cal fluctuations do not affect the shape of the critical mode
W, . Thus the formuld9), with properly renormalized expo-
nent 3, remains valid in the critical regime also. As long as
\/n—%,baar @) the u_n_ique critical mode is singled out in the vicinity _o_f the
transition, the coloredi.e., multimode nature of the initial
Equation (6) defines a surface of percolation transitions inmodel becomes irrelevant for its critical behavior. Therefore
the space of parameteﬁs(vector in color indicesand b the true(renormalizedl cri'gical exponentdin particular, 8)
(matrix in color indices Each point in this space represents 0f the colored percolation models should have standard
a particular system of the class, where the local symmetry jyalues—the same as for classical smg_)le:color percolation
presumed. models(see[25]). The scalar functionaC{n,b}, though un-
The generalized percolation criteri¢8), first introduced known, is nonsingular at the percolation surface. It plays the
in [17], appears to be quite successful in some cases. Fégle of the nonuniversal constant of the standard theory of
example, it made it possible to describe the temperature détitical phenomena.
pendence of the hopping conductivity in the whole range of
temperatures by a universal formula with a single parameter Il. THE GLOBAL SYMMETRY
(the critical valueB,,): both low and high temperature lim-
iting regimes were reproduced with high accuracy by a The symmetry discussed in the previous section con-
single formula(see[17]). One should not forget, however, cerned only the position of the surface of percolation transi-
the approximate character of the symmetry. Any theor)}:ions, and the percolation probability in its close vicinity.
based on it might be inaccurate or even misleading, if sysNow we try to go further and examine the percolation prob-
tems with very different properties are forcefully included in abilities in the whole range of parameters.

where the self-consistently weighted invari&@{in,b} is the
maximal eigenvalue of a symmetric real matrix

aa’

the same class. Let us take for orientation the percolation probabilites
obtained by Frisclet al. [31]. In Fig. 2a) we plot P for the
4, Partial percolation probabilities near the percolation site-percolation problem, not as a function of the site con-
threshold and critical modes centrationx, but as a function of the invariarit. One can see

that the curves for different lattices of the same dimension-
ality d but differing inZ merge with the same accuracy of a
few percent, not only at the threshold, but in the whole range
of ¥’s. This observation means that, without lowering the
accuracy of approximation, we can not only postulate the
u ¢(a) ®) same values of},, for all these lattices, but assume that the
Jng @ entire functionP(9) is identical for them. This assumption
we will refer to asglobal symmetryin contrast tdocal sym-
whereu, are some amplitude coefficients yet to be found.metry, the latter claiming only coincidence of percolation
The eigenvector related to the maximal eigenvalue we wilthresholdsdy, .
call the critical mode and denote it as, for brevity; the For the case of the bond-percolation model the assump-
corresponding critical amplitude i&). Analysis of Egs. tion of global symmetry does not work as well as for site
(3),(4) taking account of the quadratic correctiorMibshows  percolation. In Fig. &) we plotP for bond percolatiortalso

To study the color dependence Bf near the threshold it
is convenient to expand it in terms of normalized eigenvec-

tors ¢p(a“) of the matrixb,, :
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FIG. 2. lllustration of global symmetry for percolation in differ-
ent systems(a) Percolation probabilityP for site percolation on
different 2D and 3D latticesafter [31]), replotted agains®. (b)
The same for bond percolation, replotted agaBstc) The same
for a binary mixture of metal spheres of radiRg, and insulating
ones of radiuR; (after [9]) plotted againsB=B,,,, (the average
metal-metal coordination numberfor different values of the pa-
rameterp=R,/R,,.

taken from[31]) as a function of the invariarB=Zp. One

PHYSICAL REVIEW E65 021301

postulate global symmetry for lattice bond percolation. For
2D lattices the curves do not merge at all: the global sym-
metry does not hold.

Global symmetry has been observed in a binary system of
randomly packed spheres. Bouvard and Laf@enumeri-
cally found both the percolation probability for a metal
grain and the average metal-metal coordination number
Bnm- Then they plotted® againstB,,,. The plots obtained
for different values of the parametpr=R,,/R, in the range
1/3<p<3 merged perfectly, which suggests global symme-
try for a class of binary mixtures with reasonably broad size
distributions[see Fig. 2c)].

In general, the global symmetry for classes of single-color
percolation models can be formulated as follows. Each class
of (approximate symmetry is characterized by the form of
the invariantl{x} and a function”(1). The percolation
probability for any system with parametefg} is thenP
~P(I{un}). The above analysis has demonstrated that the
global symmetry works perfectly well for percolation in ran-
domly packed binary mixtures and for site percolation on
regular lattices. For the bond percolation on 3D lattices the
global symmetry works reasonably well, while for bond per-
colation on 2D lattices it seems to break down. Note, how-
ever, that for 2D bond percolation already the local symme-
try is much worse than in other cases.

A. Global symmetry for colored systems

Since, in the case of colored systems, there is no unique
percolation probability, but only partial percolation prob-
abilities P, for different colors, the generalization of the con-
cept of global symmetry for colored systems is not straight-
forward.

1. The equation of state

The most natural generalization rests on the assumption
that Eq.(4) is valid not only in the vicinity of the percolation
threshold but everywhere. Thus, we postulate the “equation
of state”

P.=W| >, b,.n, Pa,} . (10)
a!

This nonlinear integral equation governs the partial percola-
tion probabilitiesP, .

2. Universality of the structure function W(x)

The structure functiolV(x), appearing in the equation of
state(10), plays a crucial role in our approach. It is supposed
to be approximately system independent, within a certain
reasonably broad class of systems; i.e., it depends neither on
the color distribution parameteﬁs nor on elements of the

bonding matrixb. It reflects, however, the topology of the
infinite percolation cluster. The universality of the function
W(x) means that the topology of the infinite cluster does not
change with a change of its color composition. If one adopts

can see that the curves for different 3D lattices are not thathe universality ofW, then the equation of staf@0) gives an
far from each other, and for crude estimations in 3D one camqually universal solution which determines the dependence
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of the partial percolation probabilitieB, on the parameters so that
of the system. Thus, the assumption of universality of the
function W is the generalization of the global symmetry as- Pa=W(AA,), (18
sumption for colored systems. . . ) )
The important consequence of global symmetry in prac—a”d the integral equation of state is reduced to a nonlinear

tice is the possibility of extracting the structure function gov-guation for one parametar
erning the entire class of colored systems from the percola-
tion probability P(B) found (numerically for a subclass of A= NALWNA,). (19
single-color systems. By definition, in a single-color system a
there is only one “active” speciea,, so that bonds can only i i ) i ) )
be formed between sites of colag (the existence and num- The self-consistent invariaf® entering the percolation crite-
ber of other, “passive” species is irrelevant for the active MM
species bonding patternFor such a system the matriy, .,
reduces to a scaldr, , =b andn, has only one relevant B=>, n,AZ, (20)

a

componentn, =n. Equation(10) for this case becomes

has the simple meaning of mean squared activity.

P=W(bPn), (11
while the invariant, obviously, i8=bn in this case. Thus, V. APPLICATION OF GLOBAL SYMMETRY APPROACH
we end up with the equation TO POLYDISPERSE PARTICULATE COMPOSITE
MATERIALS
P=W(BP). (12

Powder technology produces metal-insulator and metal-
On the other hand, the global symmetry for the subclass ofolid-electrolyte composites, used in supercapacitors and
single-color systems requires thHat="P(B). As a result, we solid-oxide fuel cells. In first approximation these compos-
obtain the following implicit definition for the structure func- ites may be considered as mixtures of randomly packed
tion W(x) in terms of the functiori?(B): spheres.
Prompted by results of Bouvard and Lar{§é we adopt
the hypothesis of global symmetry for such mixtures. More-
over, we are going to extend it to polydisperse systems, using
the general results of the previous section. Such an extension
The general behavior of the functidN(X) can be derived is, Certaimy, a hypothesisy which has yet to be proved by
from that of P(B); namely, it is easy to show that well- numerical simulations.
known properties of the percolation probability, For definiteness we consider a dual system composed of
. . electronically conductingmetal or semiconductpand elec-
P(B)=0 if B<B, tronically nonconductinginsulator or ionic conductgrcom-
ponents. For brevity, they will be called, hereafter, “metal”
and “insulator,” respectively. In the problem of percolation
through the metal subnetwork only the metal grains are ac-
tive sites, so that it is convenient to concentrate on the metal
XIBg, if Xx<Bg, subnetwork. Although the insulating grains are not sites of
W(X)~ (15 this subnetwork, they are certainly important for the prob-
1 ability of establishing bonds between metal sites. Thus, the
; characteristics of the insulating component will influence the
Indeed, Eq.(13), together with the propert)P(B)|BHBm bonding matrix for the metallic subnetwork. The metal
grains in the polydisperse mixture are not equivalent: they
have different radii. In terms of the general theory of the
preceding sections, the radius of a grain plays a role of color.
Our first task is then to find out if this system can be de-
Let us discuss one special case, important for polydisscribed by the bonding matrix model, and, if yes, to elucidate
perse granular systems. Suppose that each edkrcharac-  the structure of the matrix.
terized by the “bonding activity"A,, and that the bonding
matrix may be represented in the multiplicative form

_ (X
W="P| - (13)

P(B)—1 if B>B,,, (14)

lead to the following asymptotics of the functiéi(x):
if x>Bg,.

—0, require thatX/W)|w_ o— B, . This is equivalent to the
first line in Eq.(15).

3. The case of multiplicative bonding matrix

A. A model for a particulate composite

Daar =AzAa - (16) We take a standard steepest descent model of the compos-
ite deposition proced®,4,13,15,16,6,p In this model gran-
Then from Eq.(3) we get ules fall down into a vessel one by one from random places
above(see Fig. 3. They hit the pile of grains, those that have
B‘(ai.c.):)\Aa where }\:z A.n.P., (17) fallen_ bef_ore, most probably at a singl_e point. A_Ithough th_e
a collision is assumed perfectly inelastic, a configuration in
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O B. Statistics of coordination for a particulate composite

Every new grain adds exactly three new intergrain con-
tacts to the system. Since each contact connects two gran-
ules, we conclude that the average number of contacts of a
granule is

Zy=3X2=6. (25)

The next step is to determir&(r)—the number of con-
tacts with arbitrary other grains that, on average, a grain of
radiusr has.A priori we know only thatZ(r)=3, because
each grain has at least three contacts, required by mechanical
stability.

A plausible assumption, proposed in Ref] (see also the
earlier work[7,5])), is that the exces&(r) — 3 is proportional
to the surface of the particle; thus

_Ap2
FIG. 3. lllustration for the steepest descent sedimentation pro- Z(r)—3=Ar?, (26)

cess(see text o
where the constamh can be found from the normalization

which a newcomer grain touches the others at only one poin‘iond'tIon
is unstable mechanically. The newcomer thus slides down- (Z)=Z4=6 27)
ward along the steepest descent path on the pile surface, until o
it _tquches the grains of the pile aiure_e points. nge the Aqa result, one obtains
sliding stops. These three contacts fix the position of the
granule, and it is assumed to remain in this position, not
affected by any new granules that could possibly fall on top Z(r)=3
of it later.

In this idealized model the packing geometry is not af-
fected by the type of graitmetal or insulator We thus may ~Wwhere
treat the grains of both types on an equal footing and intro- 5 o ) )
duce an overall grain-radius distributigimrespective of the RE=(r9) =XnRip + xR (29)
grain sor}

r2

1+ ). (28)

is the overall average squared radius of the graiR% (
N(r)=XmNm(r)+xni(r), (2)  =(r?,, and R?=(r?); being the average squared radii of
metal and insulating grains, respectiveljlthough the an-
wherex,, andx; are the particle fractions of metal and insu- Satz (26) has never been justified theoretically, numerical
lator, respectively, simulations solidly support it, at least in the case when the
distribution of sizes is not too broad.
It is, however, not enough to kno#(r) for determination
of the system properties. One needs to know how the part-
ners contacting a given grain of radiusare distributed over

It is also convenient to introduce three different types ofradii r,. Such a distributiorZ(r,r,) should obey the obvi-
averaging: the averagings over size distributions of metal 0ps normalization condition

insulating grains separately,

Xm+X;= 1. (22

» f Z(ry,rp)drp=2(ry). (30)

<<-~>>mzf (- )ng(r)dr, °

° (23) Yet another ansat;, a mutiplicat!ve one, also put forward in
[9] (see alsd32)), fixes the functional form oZ(r,r,). In

()= fm(. Cng(rydr a slightly modified form—to fit our polydisperse case—it is
1= i ’
0
Z(rq,r
2L nzir) (3D
and overall averaging, (ry)
which means that the fraction of contacts that link any fixed
CoN\— Con(ndr= eVl grain with other grains of given size, is proportional to
(G- fo( IN(OAr=Xm{ (- Dmt () both the concentration(r,) and the activityZ(r,) of the
(249 latter.
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Substitution of(31) in the normalization conditior§30) 1.0
gives the proportionality constant. As a result, one obtains
0.8
Z(ry,r2)=2Z(r)Z(r)n(rz)/Zg
> )(1 Hip rg) @
=—N I’2 + — +—.
2 R? R? W
. B B . . . . . 04
For interpretation of the multiplicative ansaf2l) it is in-
structive to have in mind the following picture. Let us rep-
resent each grain of radiusby an object withZ(r) “termi- 02
nals.” These terminals tend to couple with similar terminals
of other grains. A contact of grains is just a result of such o0
. . . . 1 2 3 4
coupling. One can try to view the collection of all terminals
X

of all grains as a sort of homogeneous uncorrelated gas,
where each terminal chooses a partner for coupling at ran- FiG. 4. Plot of the universal functiow(x) for the problem of a
dom. This picture(certainly it can only be approximately particulate compositgextracted from the data plotted in Fig(c2
correc) immediately leads to the statistics of contacts de-with the help of the functional equatiaqd3)].

scribed by formulg31).

r2

1+

r2

1+ —

N 2

2 2
5 Iz
1+ E) ( 1+ ?

3Xm
B(rl,rz):Tnm(rz)

3%, ra
B(rl)=fB(r1,r2)dr2=7 1+§

cally from the functional equatiofl3) with the P(B) given
C. Percolative properties of a subsystem of metal grains by Fig. 2c). The parametei in Eq. (37) [its definition here
Let us now return to the problem of percolation throughdiffers from N in Eq. (17) by a factor of y3x,/2] is an
the metal subnetwork. We have to address the question: Whappropriate solution of the nonlinear equation
is the numbeB(r;) of bonds(i.e., contacts with other metal
graing for a given metal particle of radius,? What is the ~
distributionB(r1,r,) over the radiir, of the partners in the A= 5Xm Wi (38)
above bonds? Using the formul@2), and substituting in it m
the concentration of metal pariclegn,(r,) instead of the i ~
overall concentratiom(r ), we obtain obtained from Eq(19). The value ofs depends on the con-
centrationx,, and on the distribution functions,(r) and
ni(r) (the latter enters only througR?).
, (33 Application of the percolation criteriof6) with the ex-
pression(20) for the invariantB gives
3 r2\?
EXm< 1+ E) > =B, (39
m
Thus, we conclude that the problem of percolation in theExpandlng the square and rearranging, writkig=X, we
polydisperse particulate composite material can be reduced'Ve at the equation

(34

to a continuous variant of the bonding matrix model, with 3x 2 A
3Xm( . 1] r _[ 1% +[X+(1—X)p2]2]
b(rl,r2)=7(1+§ 1+§ . (35
=B, B.~2, (40)

Moreover, since the bonding matri85) is factorized, the which implicitly determines the dependence
results of the corresponding subsection can be directly ap-

plied. The activity of a metal grain of radiusis X(nfr)=X(p,Am) (41)
2
A(r)= /%( 1+ = , (36) of the critical concentration of metal graim&"” on the size
2 R? distribution functionsn,(r),n;(r) through two dimension-

less parameters: the asymmetry parameter

Ri|\?_(S)
P2 A
_ (37) g _(Rm) (Sm’ 42

where S is the area of the grain surface, and the relative
The functionW(x) is shown in Fig. 4. It was found numeri- dispersion of metal grain surfaces,

and the partial percolation probabilities are

- r?
PIN=W K| 1+ -
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. 2
Am=RaH(r2— REy 2= S g

(S
Note that, to find the critical concentration, one needs to
know only the two lowest moments of the surfaces distribu-
tions, (S, and(S?),.

In the case of a mixture of two monodisperse components,
A,,=0, and the resulf40) reduces to the percolation crite-
rion obtained by Bouvard and Lang®]. The dispersion of
surface areas of metal grains diminishes the value of the
thresholdx{¢" | i.e., it facilitates percolation. Indeed, for a
fixed value ofp the percolation threshold!c" decreases
with increasingA,,. On the other hand, the dispersion of
surfaces of the nonconducting component is irrelevant for
x(" " as the latter does not depend 4n. The effect of
dispersion on the percolation threshold is especially transpar
ent in the symmetric case, considered in the next subsectior

The symmetric case

In many practical cases the distribution functiamg(r)
andn;(r) do not differ much, so that an assumption of the
same size distribution for both types of particles,

Nm(r)=n;(r)=n(r), (44)

may be considered a good approximation. Under this as-
sumption

p=1, Ap=A=A, (45)

and Eq.(40) can easily be solved foX:

X0 =X(LA)= 3

(1+A/4) (46)

) ) FIG. 5. lllustration of the question: Why does a diversification
Thus, in a polydisperse system ¢ 0) the onset of percola-  of particle sizes facilitate percolatiori@ A pattern with spheres of
tion through the metallic component occurs at a lower contomparable sizesb) the same, after doping with a fraction of much
centration of metal than in a monodisperse one=0). smaller spheres: one can see how additional bonds are established.

What is the physical reason for this effect? To answer this

question let us consider a system characterized by the distiine gther hand, the small doping particles will establish con-
bution functionn(r) and a concentration slightly below the (acts hoth with the matrixmost often and with each other
percolation thresholdx,<x{™{n(r)}. It is easy to show (rarely). As a result, a small but finite number of névdirect
that it is possible to drive the system into the percolatingcontacts between the matrix particles will be established via
regime by a small variation of the distribution function. In- the doping ones, and this can lead to the onset of percolation.
deed, suppose that we add to the system a small amount gfn the other hand, the doping obviously leads to an increase
small “doping” particles (with a radiusr 4o, much smaller  of dispersion:
that the sizer, characteristic for the initial distribution of
“matrix” particles); see Fig. 5. The new distribution function A—A+ A, SA=q(1+A)>0. (49)

n(r) is then given by

This case clearly demonstrates a correlation between the
lowering of the percolation threshold and increase of the dis-

where persion of particle sizes. The greater the dispersion of par-

ticle sizes, the higher the density of the system; in a dense

an(r)=q[8(r —rgop —N(r)1, (47) system there is, roughly, a hierarchy of bonds: the bonds

between the biggest particles are almost unhindered by the

with small g. The doping particles will mostly reside in the smaller particles, while the latter provide some new bonds;
pores of the initial network; therefore the direct contacts bestill smaller particles, again, contribute new bonds without
tween the matrix particles will not be affected by doping. Onaffecting the old ones, etc. This idea is illustrated in Fig. 5.

n(ry=n(r)+an(r),
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V. CONCLUSION particle sizes. Since the derivation is based on a number of
. . . . heuristic(although plausibleassumptions, a rigorous valid-
The most str_lklng pract|cal_ result qf this paper is E‘.tp) ity criteri(on cangotpbe obtlfined fropm the thegry, but should
for the percolation threshold in polydisperse composites anghiner pe verified by Monte Carlo simulations.
the rule that follows from it: the greater the dispersion of Equations(40) and (37) were derived under certain as-
particle sizes, the lower the percolation threshold. Above thgymptions which are fulfilled for a model of steepest descent
threshold the prObablllty for a part|C|e with sizeo belong Sedimentatior{see Sec. |VA One may envisage other fab_
to the percolation cluster is described by form(@). For  rication processes, when these assumptions may not be ful-
the case of identical size distributions for both components iffilled. It would be interesting to investigate whether other
a mixture, the solution of Eq40) gives the simple law Eq. fabrication scenarios lead to modification of these equations
(46). This law, and the basic E¢40), are warranted ah/4 In all cases, it is most interesting to check the law Ef)
<1, i.e., they cannot cover orders of magnitude difference ofor various composites.
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