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Approximate symmetry laws for percolation in complex systems:
Percolation in polydisperse composites
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The concept of so-called global symmetry of percolation models is discussed and extended to multicolored
models. An integral equation is obtained, which determines the partial percolation probabilitiesPa for sites of
color a. This equation is applied to a polydisperse particulate composite: a mixture of conducting~of relative
fractionxm) and nonconducting spheres with distributions of sizesnm(R) andni(R), respectively. We find the
probabilityPR for a conducting particle of radiusR to belong to the percolation cluster as a function ofxm and
a functional ofnm(R8) andni(R8). The percolation thresholdx is shown to decrease with increasing dispersion
D of particle sizes. A simple lawx51/(3@11(D/4)#) is obtained in the range of moderate dispersions. The
theory is applicable also to a mixture of electronic and ionic conductors.

DOI: 10.1103/PhysRevE.65.021301 PACS number~s!: 45.70.2n, 81.05.Mh, 72.80.Tm
er
is
f
a

tio

n
rts

va
a

s
la
s

at
th
to
ti

de
t

p

rt

an

y

p
e
(

di
th

em
r-
ite
an

. We
em,
trate
co-
ion
We
.
s; a
ve
cal

ical
t of

-
ire

If
a

the
ns

me-

-
ce-
ms

nta-
his

en-
m

I. INTRODUCTION

The present work is motivated by the need for und
standing the properties of technologically important polyd
perse composite materials~see@1#!, produced by sintering o
mixtures of roughly spherical granules. Their structure c
be reasonably well reconstructed in a computer simula
~see@2# and references therein!. The individual granules can
be made of different materials; in this paper we will conce
trate on two-component mixtures with granules of two so
metallic ~conductors! and insulators~or ionic conductors!.
Two-component conducting composite ceramics have a
field of application in electronics, electrical engineering, c
talysis, and electrical power generation@1,3#.

Due to the stochastic character of the formation proce
the grains in a composite material do not form a regu
lattice but rather a topologically disordered network, who
density is considerably lower than that of close packing@2#.
The physical characteristics of the system are closely rel
to its statistical geometry. For example, in order to find
electrical properties of a two-component metal-insula
composite, one has to address the problem of percola
through the subnetwork of metal grains. The solution
pends both on the details of the sintering process and on
distributionsnm(r m) andni(r i) of the radii r m and r i of the
metal and insulating grains, respectively. In the present pa
we adopt a standard model for sintering~see @2,4,5#! and
concentrate on the dependence of the percolative prope
of the network on the size distribution of grains.

An ideal case of a binary composite material, where gr
ules of the same sort have the same size, so thatnm(r m)
5d(r m2Rm) and ni(r i)5d(r i2Ri), has been extensivel
studied both experimentally@6# and numerically@7–11#; the
dependence of the physical properties on the asymmetry
rameterr5Ri /Rm is well documented. Still more data ar
available for the simplest case of equal-size distributionr
51) @12–16#.

In practice, however, there is always a considerable
persion of the grain sizes. Not much is known about
1063-651X/2002/65~2!/021301~11!/$20.00 65 0213
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influence of this dispersion on the properties of the syst
~see, however,@8,10#!. Should one try to suppress the dispe
sion in order to improve the performance of the compos
material, or would the size dispersion facilitate it? How c
one quantify the effects of dispersion?

The present paper mostly addresses these questions
propose an approximate analytical approach to the probl
based on certain approximate symmetries. We demons
that moderate dispersion improves the conditions for per
lation, and find explicit dependences of the percolat
threshold and percolation probability on the dispersion.
also give a qualitative explanation of these dependences

Polydisperse composite materials are complex system
reliable quantitative characterization of their percolati
properties is feasible only with the aid of massive numeri
simulation. All the characteristics of the system arefunction-
als of the grain-size distribution functionsnm(r m) andni(r i).
Therefore, in order to conduct a comprehensive numer
study of the problem, one has first to choose a discrete se
trial functions fornm(r m) andni(r i) and then determine~by
means of numerical simulation! the characteristics of the sta
tistical geometry for each choice. This task would requ
both huge numerical resources and a certain ideaa priori
about which set of trial functions would be most efficient.
we want to optimize the structure of the composite for
certain goal, we will then need to extend the results to
continuous space of distributions. All these complicatio
make the problem difficult forab initio numerical study and
suggest the need for some approximate analytical fra
work. Certainly,ab initio analytical treatment of the problem
is impossible~it is impossible even for much simpler sys
tems!. Instead, we propose a semiphenomenological pro
dure of finding the properties of a certain class of syste
~characterized by the distribution functions of the radii! pro-
vided these properties are known for one simple represe
tive of the class—a system of spheres with equal radii. T
task turns out to be feasible due to a certain~approximate!
symmetry observed in the numerical simulations@9#.

Although approximate, this symmetry appears to be g
eral for many percolation models. In its truncated for
©2002 The American Physical Society01-1
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~which we will call ‘‘local’’ ! such symmetry has been know
from the early work on percolation theory in the 1960s, a
it has the following meaning.

There are various classes of percolation models. E
model of a given class is characterized by a set of parame
$m% and undergoes a percolation transition at certain va
of these parameters. Within each class there should ex
certain function of the parameters—the invaria
I $m%—which takes, at the percolation transition, the sa
value I cr for all the models of the class. This statement
itself is trivial, as it simply states the existence of the surfa
of percolation transitions in the space of parameters$m%. The
nontrivial observation is thatI $m% strongly depends on only
a few relevant parameters and is almost independent o
other—irrelevant—parameters. For example, for latt
bond-percolation models the invariantI depends on the prob
ability of bond formationp, on the coordination numberZ,
and on the dimensionality of the latticed, but it is approxi-
mately independent of the type of lattice. The ‘‘symmetry’’
nothing other than the above approximate independenceI
on certain characteristics of the model. Its accuracy is usu
of the order of a few percent.

A detailed analysis shows, however, that the above ‘‘lo
symmetry’’ can actually be extended to a ‘‘global symm
try.’’ That is the numerical data show that not only is th
value of I $m% at the percolation threshold approximately i
variant, but also the percolation probabilityP takes approxi-
mately the same values for different models of the cla
provided that these models are characterized by the s
values ofI. In other words, each class is characterized by
invariantfunction P(I ). The global symmetry claims that th
percolation probabilityP is a function of a single variable—
the invariantI—and this is true within the entire space
parameters$m%, not only in the vicinity of the percolation
threshold. This is fulfilled with an accuracy similar to th
accuracy of the local symmetry, so that there is no reaso
use the local symmetry without taking advantage of
broader global one.

The generalization of the global symmetry to color
models, where each speciesa is characterized by its own
percolation probabilityPa , is not obvious. It can, however
be accomplished in a similar way as for the local symme
case in@17#, where an approximate criterion was propos
for percolation in a system with an arbitrary number of d
ferent species—‘‘colors.’’ In the present work we general
the arguments of@17# to validate the global symmetry. Thi
generalization allows one to find not only the percolati
threshold, but also the percolation probability and distrib
tion of sites within the percolating cluster over different sp
cies, which is important for applications. These characte
tics can be compared with the results of experiments
numerical simulations.

We should stress that theapproximategeneralized theory
of global symmetry is not devised to describe the delic
universal behavior of the system near the percolation thre
old ~critical exponents, etc.!. It rather claims the ability to
treat a reasonably wide range of complex systems, chara
ized by a multitude of parameters, with the help of relative
simple universal formulas.
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The paper is organized as follows. In Sec. II we revie
the local symmetries known for different percolating sy
tems, with the emphasis on the colored topologically dis
dered models, to which class the polydisperse composite
terials belong. In Sec. III we introduce the concept of glob
symmetry and demonstrate its existence for cases when
local symmetry exists. Again, the colored models are d
cussed most extensively. The equation of state governing
partial percolation probabilities for different species is intr
duced and the properties of its solutions are described
Sec. IV we apply the general methods to particulate comp
ites and find the dependence of the percolation threshold
partial densities of the percolation cluster on the parame
of the particle size distributions. A summary of the ma
results and a discussion of the limitations of the pres
theory conclude the paper.

II. LOCAL SYMMETRIES IN PERCOLATION MODELS:
AN OVERVIEW

The idea of what we call ‘‘local symmetry’’ is by no
means new, so we start our discussion with a review of
ferent types of local symmetry, found in different systems

A. Percolation on a regular lattice

The local symmetry was first proposed by Domb a
Sykes@18# ~see also@19,20#!, who noticed that for all bond-
percolation problems on various regular lattices of a giv
dimensionalityd the percolation thresholdpcr is, roughly,
inversely proportional to the coordination numberZ. In other
words, if one considers the average numberB5Zp of bonds
connecting a given site to its neighbors, then the value oB
at the percolation threshold,Bcr , is approximately invariant
over the entire class of bond-percolation problems of fix
dimensionality:Bcr(d)'d/(d21).

Later, Scher and Zallen@21# proposed a different
invariant—the ‘‘volume fraction’’q—for the site percola-
tion. It is constructed as follows. One draws identical sphe
around all sites of the lattice in such a way that the sphe
corresponding to neighboring sites touch each other. T
one calculates the density of packingrp : the ratio of the
total volume of all spheres to the entire volume of the latti
The invariant isq5rpx, where x is the probability for a
given site to be ‘‘painted black’’~if one considers percolation
via black sites!. Thus, q has the meaning of the packin
density for the subsystem of ‘‘black spheres’’ in the abo
construction. Again, the valueqcr of q at the percolation
threshold is approximately invariant for different lattices
the same dimensionality.

The approximate invariance ofqcr and Bcr is illustrated
in Figs. 1~a!,~b!. More details about percolation in regula
lattices can be found in the classical review by Shante
Kirkpatrick @22#.

B. Percolation on random sites

Skal and Shklovskii@23# and Pike and Seager@24# intro-
duced the invariant for the model of percolation on rand
sites~also called the ‘‘Swiss cheese model;’’ see@25#!. In this
1-2
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APPROXIMATE SYMMETRY LAWS FOR PERCOLATION . . . PHYSICAL REVIEW E65 021301
problem one considers a medium with randomly placed id
tical cavities ~random sites!, usually—but not
necessarily—of spherical shape. Percolation occurs whe
infinite number of holes overlap, so that one can tra
throughout the system via an infinite labyrinth of connec
cavities. This model is essential for the theory of hopp
conductivity in semiconductors; see@26#. It is interesting that
the physical meaning of the invariantB for the class of
random-site-percolation models appears to be exactly
same as for the bond-percolation class: it is the average n
ber of holes overlapping with any given one. The local sy
metry is that the value ofB at the percolation threshold i
approximately independent of the shape of the individ
cavity. However, the value ofBcr(d) for the class of topo-
logically disordered random-site-percolation models@Bcr(d
52)'4 andBcr(d53)'2.7# differs considerably from tha
for bond percolation on regular lattices.

C. Randomly packed spheres: Binary mixtures

Consider a mixture of spheres of two sorts:m ~metal! with
radii Rm , and i ~insulator! with radii Ri . Since all the me-
tallic spheres in such a mixture are identical, one can ap
the ideas of local symmetry to this system also. It was s

FIG. 1. Illustration of local symmetry for percolation models o
different two-~2D! and three-dimensional~3D! lattices~after @22#!.
Z is the coordination number.~a! Values ofqcr for site percolation;
~b! values ofBcr[Zpcr for bond percolation.
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gested@3,27,28,14,16# that this system belongs to the class
B-invariant systems, so that the average numberBmm of
bonds connecting a given metal site to other metal sites is
invariant. Decisive support for this view came from the wo
by Bouvard and Lange@9#. They simulated the binary com
posite system and showed numerically that the onset of
colation in the system occurs at the same value of the me
metal coordination numberBmm5Bcr'2 for different values
of the parameterr5Rm /Ri in the range 1/3,r,3. Outside
this range the accuracy of the local symmetry becomes p
Hence, it is likely that all binary mixtures with not ver
strongly differing sizes of constituent grains obey the lo
symmetry with respect to the invariantBmm.

D. Bond-percolation type of symmetry for topologically
disordered site-percolation models

Both random-packing percolation and random-site per
lation demonstrate symmetry described by an invariant oB
type. Why do these manifestly site-percolation systems p
sess symmetry of bond-percolation type? Here one may
forward the following qualitative arguments~see@29#!. Let
us concentrate on the conducting granules and keep trac
the bonds between them. Due to the random environm
inherent in the topologically disordered lattice, these bon
as in the bond-percolation model, are being establis
roughly independently of each other. The same argume
are also applicable to random-site percolation.

This feature distinguishes the topologically disorder
site-percolation model from the conventional site-percolat
one ~where there is a strong correlation between differ
bonds of a given site!, and makes it rather similar to bon
percolation.

E. Colored systems

The problem of constructing the invariant becomes m
complicated if one considers a colored system~see, e.g.,
@30#!, i.e, a system where each site is characterized b
parameter~or a set of parameters! a, with a priori probabili-
ties na ((ana51). The bonding probability~i.e., the prob-
ability paa8 for two neighboring sites to be connected! de-
pends on the values of the parametersa,a8 for the sites
involved. As in the conventional site-bond-percolation pro
lem ~see@25#!, there are two different types of disorder: th
sites are randomly occupied by different species, and
bonds between sites are also established randomly. An
portant complication, however, is the nontrivial character
the matrix paa8 : the bonds are not necessarily establish
only between sites of the same color. In topologically dis
dered systems the picture is further complicated due to fl
tuations of the local coordination.

The class of colored percolation problems is extrem
wide: for example, it includes both bond percolation and s
percolation as limiting subclasses. Thus, the general inv
ant I for the colored percolation class~provided it exists!
must reduce in the two limits toB andq, respectively. The
character of local correlation in these two subclasses is, h
ever, very different. Therefore finding a reasonable inter
lation betweenB and q is a tough problem: to our knowl
1-3
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ALEXEI S. IOSELEVICH AND ALEXEI A. KORNYSHEV PHYSICAL REVIEW E65 021301
edge, nobody has solved it so far. In@17#, and also in the
present paper, we restricted our consideration to the dom
of ‘‘bond-percolation-type problems’’ by postulating that th
invariant for the problem of interest is still related to bon
ing; whether it is true or not for any particular class of sy
tems can only be checkeda posteriori. However, having in
mind the arguments of the previous subsection, one may
pect that the symmetry for topologically disordered color
systems~such as polydisperse two-component mixtures! will
again correspond toB type.

The choice of bondlike percolation does not yet fix t
structure of the invariant: the way to introduce the bond
invariantB is not unique; to choose the right one we have
invoke additional physical arguments.

1. The bonding matrix

Consider an average numberBaa8 of bonds connecting a
given site of colora to other sites of colora8. It can be
written in the form

Baa85baa8na8 . ~1!

In the case of colored percolation on a regular lattice w
fixed coordination numberZ the bonding matrixb̂ does not
depend on the distribution functionnW ; it is simply related to
the bonding probability:baa85Zpaa8 . In the present pape
we are mostly concerned with percolation in topologica
disordered networks, whereZ itself is subject to fluctuations
so it seems more appealing to introducebaa8 as a primary
characteristic of the system, comprising both fluctuations
bonding and fluctuations of coordination. It is a tricky poin
however. Indeed, in random networks the local coordinat
may depend on the coloring of the environment~especially if
the ‘‘color’’ reflects the size of a granule occupying the sit!,
and thereforeb̂ may itself be a functional ofnW . Such an
effect of correlation between the bonding matrix and the d
tribution function does exist in the system of random
packed spheres with which we are concerned. Fortuna
for not very wide distributions~such that relevant radii in the
distribution differ by not more than a factor of 3! it has a
trivial form: the distribution function entersb̂ only through
the average squared grain radiusR2 ~see Sec. IV!. For
broader distributions the correlations become nontrivial, a
our theory should be considerably modified in this case.
have so far not been able to elucidate the character of t
correlations and make necessary modifications.

Thus, the concept of the bonding matrix is meaning
and productive for some models~we will call them the bond-
ing matrix models!, while for other models the formula~1!

does not make much sense, sinceb̂ depends onnW in some
unknown way. The general approach developed below is
fective only when applied to bonding matrix models.

2. Construction of invariant

The total average number of bonds for a site of colora is

Ba5(
a8

baa8na8 . ~2!
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Sincebaa8 is a matrix, one has yet to propose a procedure
producing the invariantB ~which needs to be a scalar! out of
this matrix. This task turns out to be a nontrivial one. T
simplest ‘‘naive’’ version would be just to averageBa over
the colorsa with certain properly chosen weights. No cle
procedure for choosing these weights has been propo
Somead hocprescriptions~see, e.g.,@26#! are logically ques-
tionable; furthermore, they work poorly. Why do these
tempts fail? Apparently the reason is as follows. Since
sites are not equivalent in the colored problem, the bo
should be counted with certain color-dependent weigh
which reflect the effective ability of a given neighbor to b
further connected to the infinite cluster. And that should
ready be done when calculatingBa for a fixed colora, not
only at the stage of averaging it over colors. A self-consist
prescription for assigning the weights for different colo
was proposed in@17#. The key idea is that the weights shou
reflect the participation of a given color in the infinite perc
lation cluster. Certain colors are more likely to be bond
therefore their relative representation in the infinite cluste
enhanced, compared to theira priori probability, while some
other colors are bonded less readily, and they should be
represented in the infinite cluster. Thus, the probabilit
na

( i .c.) of finding given species within the infinite cluster d
pend on the structure of the bonding matrix; they should
found self-consistently.

The procedure proposed in@17# for finding na
( i .c.) is based

on the assumption, that, at least in the vicinity of the per
lation threshold, the partial percolation probabilityPa

[na
( i .c.)/na , i.e., the probability for a given site of colora to

belong to the infinite cluster of bound sites, depends on
single parameter, characterizing its average local coord
tion, namely, on the average numberBa

( i .c.) of relevant
bonds, defined as those bonds that connect it with an infi
cluster:

Ba
( i .c.)5(

a8
baa8na8

( i .c.)
5(

a8
baa8na8Pa8 . ~3!

Thus, in@17# it was postulated that

Pa5W~Ba
( i .c.)!, ~4!

where the functionW(B) is universaland independent ofa
for a given class of systems, at least in the vicinity of t
percolation threshold. Note, that, in contrast to thea priori
colorings of sites, the partial densities of the infinite perc
lation cluster are strongly correlated, especially near the
colation transition. For example, the probabilityna1a2

( i .c.)( i 1i 2)

of finding both sitesi 1 andi 2 belonging to the infinite cluste
and additionally having colorsa1 anda2 does not reduce to
a product ofna1

( i .c.) and na2

( i .c.) . However, by definition, the

nontrivial correlators do not enter the average number
relevant bondsBa

( i .c.) and the formula~3! is exact. Thus, the
crucial approximation is the assumption thatPa depends ex-
clusively onn( i .c.), not on higher correlators, and, moreove
that it depends onn( i .c.) only throughBa

( i .c.) . The solution of
the system of Eqs.~3!,~4! gives, in principle, the partial per
1-4
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APPROXIMATE SYMMETRY LAWS FOR PERCOLATION . . . PHYSICAL REVIEW E65 021301
colation probabilitiesPa and the percolation threshold as th
point where allPa simultaneously vanish.

3. The percolation threshold

Near the percolation threshold the percolation probab
ties are small; therefore the argumentBa

( i .c.) of the function
W(Ba

( i .c.)) should also be small. In the spirit of the gene
mean field theory of phase transitions we postulate an a
lytic behavior of the functionW(B) at smallB:

W~B!5
B

Bcr
2const3B21•••. ~5!

The coefficient in front of the quadratic term should be ne
tive to ensure that the percolation exists forB.Bcr and is
absent forB,Bcr . The percolation criterion can easily b
found as the condition that Eqs.~3!,~4! have a nontrival so-
lution. As a result, this criterion reads

B$nW ,b̂%5Bcr , ~6!

where the self-consistently weighted invariantB$nW ,b̂% is the
maximal eigenvalue of a symmetric real matrix

b̃aa85Anana8baa8 . ~7!

Equation~6! defines a surface of percolation transitions
the space of parametersnW ~vector in color indices! and b̂
~matrix in color indices!. Each point in this space represen
a particular system of the class, where the local symmetr
presumed.

The generalized percolation criterion~6!, first introduced
in @17#, appears to be quite successful in some cases.
example, it made it possible to describe the temperature
pendence of the hopping conductivity in the whole range
temperatures by a universal formula with a single param
~the critical valueBcr): both low and high temperature lim
iting regimes were reproduced with high accuracy by
single formula~see@17#!. One should not forget, howeve
the approximate character of the symmetry. Any the
based on it might be inaccurate or even misleading, if s
tems with very different properties are forcefully included
the same class.

4. Partial percolation probabilities near the percolation
threshold and critical modes

To study the color dependence ofPa near the threshold i
is convenient to expand it in terms of normalized eigenv
tors ca

(a) of the matrixb̃aa8 :

Pa5
1

Ana
(
a

uaca
(a) , ~8!

whereua are some amplitude coefficients yet to be foun
The eigenvector related to the maximal eigenvalue we
call the critical mode and denote it asCa for brevity; the
corresponding critical amplitude isU. Analysis of Eqs.
~3!,~4! taking account of the quadratic correction toW shows
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that all the amplitudesua simultaneously vanish, asB ap-
proachesBcr from above. However, the critical amplitud
vanishes as a linear function ofB2Bcr , wnile noncritical
amplitudes vanish much faster. Thus, in full accord with t
general theory of second order phase transitions, only
critical mode survives in the vicinity of the transition. F
nally, we can write the following formula, valid in the vicin
ity of the percolation transition surface:

Pa$nW ,b̂%'C$nW ,b̂%
Ca$nW ,b̂%

Ana

~B$nW ,b̂%2Bcr!
b

3u~B$nW ,b̂%2Bcr!, ~9!

whereb is the exponent for the infinite cluster density. If th
above analysis@based on the assumption of an analytic b
havior of W(B)# is taken seriously, the critical exponentb
51, which is the well known mean field result. Fluctuatio
strongly renormalize the amplitudeU in the critical region,
changing the critical exponentb. At the same time, the criti-
cal fluctuations do not affect the shape of the critical mo
Ca . Thus the formula~9!, with properly renormalized expo
nentb, remains valid in the critical regime also. As long
the unique critical mode is singled out in the vicinity of th
transition, the colored~i.e., multimode! nature of the initial
model becomes irrelevant for its critical behavior. Therefo
the true~renormalized! critical exponents~in particular,b)
for the colored percolation models should have stand
values—the same as for classical single-color percola
models~see@25#!. The scalar functionalC$nW ,b̂%, though un-
known, is nonsingular at the percolation surface. It plays
role of the nonuniversal constant of the standard theory
critical phenomena.

III. THE GLOBAL SYMMETRY

The symmetry discussed in the previous section c
cerned only the position of the surface of percolation tran
tions, and the percolation probability in its close vicinit
Now we try to go further and examine the percolation pro
abilities in the whole range of parameters.

Let us take for orientation the percolation probabilitiesP
obtained by Frischet al. @31#. In Fig. 2~a! we plot P for the
site-percolation problem, not as a function of the site co
centrationx, but as a function of the invariantq. One can see
that the curves for different lattices of the same dimensi
ality d but differing in Z merge with the same accuracy of
few percent, not only at the threshold, but in the whole ran
of q ’s. This observation means that, without lowering t
accuracy of approximation, we can not only postulate
same values ofqcr for all these lattices, but assume that t
entire functionP(q) is identical for them. This assumptio
we will refer to asglobal symmetry, in contrast tolocal sym-
metry, the latter claiming only coincidence of percolatio
thresholdsqcr .

For the case of the bond-percolation model the assu
tion of global symmetry does not work as well as for s
percolation. In Fig. 2~b! we plotP for bond percolation~also
1-5
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taken from@31#! as a function of the invariantB5Zp. One
can see that the curves for different 3D lattices are not
far from each other, and for crude estimations in 3D one

FIG. 2. Illustration of global symmetry for percolation in diffe
ent systems.~a! Percolation probabilityP for site percolation on
different 2D and 3D lattices~after @31#!, replotted againstq. ~b!
The same for bond percolation, replotted againstB. ~c! The same
for a binary mixture of metal spheres of radiusRm and insulating
ones of radiusRi ~after @9#! plotted againstB5Bmm ~the average
metal-metal coordination number!, for different values of the pa-
rameterr[Ri /Rm .
02130
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postulate global symmetry for lattice bond percolation. F
2D lattices the curves do not merge at all: the global sy
metry does not hold.

Global symmetry has been observed in a binary system
randomly packed spheres. Bouvard and Lange@9# numeri-
cally found both the percolation probabilityP for a metal
grain and the average metal-metal coordination num
Bmm. Then they plottedP againstBmm. The plots obtained
for different values of the parameterr5Rm /Re in the range
1/3,r,3 merged perfectly, which suggests global symm
try for a class of binary mixtures with reasonably broad s
distributions@see Fig. 2~c!#.

In general, the global symmetry for classes of single-co
percolation models can be formulated as follows. Each c
of ~approximate! symmetry is characterized by the form o
the invariant I $m% and a functionP(I ). The percolation
probability for any system with parameters$m% is then P
'P(I $m%). The above analysis has demonstrated that
global symmetry works perfectly well for percolation in ra
domly packed binary mixtures and for site percolation
regular lattices. For the bond percolation on 3D lattices
global symmetry works reasonably well, while for bond pe
colation on 2D lattices it seems to break down. Note, ho
ever, that for 2D bond percolation already the local symm
try is much worse than in other cases.

A. Global symmetry for colored systems

Since, in the case of colored systems, there is no uni
percolation probability, but only partial percolation pro
abilitiesPa for different colors, the generalization of the co
cept of global symmetry for colored systems is not straig
forward.

1. The equation of state

The most natural generalization rests on the assump
that Eq.~4! is valid not only in the vicinity of the percolation
threshold but everywhere. Thus, we postulate the ‘‘equa
of state’’

Pa5WF(
a8

baa8na8Pa8G . ~10!

This nonlinear integral equation governs the partial perco
tion probabilitiesPa .

2. Universality of the structure function W(x)

The structure functionW(x), appearing in the equation o
state~10!, plays a crucial role in our approach. It is suppos
to be approximately system independent, within a cert
reasonably broad class of systems; i.e., it depends neithe
the color distribution parametersnW nor on elements of the
bonding matrixb̂. It reflects, however, the topology of th
infinite percolation cluster. The universality of the functio
W(x) means that the topology of the infinite cluster does
change with a change of its color composition. If one ado
the universality ofW, then the equation of state~10! gives an
equally universal solution which determines the depende
1-6
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of the partial percolation probabilitiesPa on the parameters
of the system. Thus, the assumption of universality of
function W is the generalization of the global symmetry a
sumption for colored systems.

The important consequence of global symmetry in pr
tice is the possibility of extracting the structure function go
erning the entire class of colored systems from the perc
tion probability P(B) found ~numerically! for a subclass of
single-color systems. By definition, in a single-color syst
there is only one ‘‘active’’ speciesa0, so that bonds can only
be formed between sites of colora0 ~the existence and num
ber of other, ‘‘passive’’ species is irrelevant for the acti
species bonding pattern!. For such a system the matrixbaa8
reduces to a scalarba0a0

[b and na has only one relevan

component,na0
[n. Equation~10! for this case becomes

P5W~bPn!, ~11!

while the invariant, obviously, isB5bn in this case. Thus
we end up with the equation

P5W~BP!. ~12!

On the other hand, the global symmetry for the subclas
single-color systems requires thatP5P(B). As a result, we
obtain the following implicit definition for the structure func
tion W(x) in terms of the functionP(B):

W5PS x

WD . ~13!

The general behavior of the functionW(x) can be derived
from that of P(B); namely, it is easy to show that wel
known properties of the percolation probability,

P~B![0 if B,Bcr ,

P~B!→1 if B@Bcr , ~14!

lead to the following asymptotics of the functionW(x):

W~x!'H x/Bcr if x!Bcr

1 if x@Bcr .
~15!

Indeed, Eq.~13!, together with the propertyP(B)uB→Bcr

→0, require that (x/W)uW→0→Bcr . This is equivalent to the
first line in Eq.~15!.

3. The case of multiplicative bonding matrix

Let us discuss one special case, important for polyd
perse granular systems. Suppose that each colora is charac-
terized by the ‘‘bonding activity’’Aa , and that the bonding
matrix may be represented in the multiplicative form

baa85AaAa8 . ~16!

Then from Eq.~3! we get

Ba
( i .c.)5lAa where l5(

a
AanaPa , ~17!
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so that

Pa5W~lAa!, ~18!

and the integral equation of state is reduced to a nonlin
equation for one parameterl:

l5(
a

naAaW~lAa!. ~19!

The self-consistent invariantB entering the percolation crite
rion,

B5(
a

naAa
2 , ~20!

has the simple meaning of mean squared activity.

IV. APPLICATION OF GLOBAL SYMMETRY APPROACH
TO POLYDISPERSE PARTICULATE COMPOSITE

MATERIALS

Powder technology produces metal-insulator and me
solid-electrolyte composites, used in supercapacitors
solid-oxide fuel cells. In first approximation these compo
ites may be considered as mixtures of randomly pac
spheres.

Prompted by results of Bouvard and Lange@9#, we adopt
the hypothesis of global symmetry for such mixtures. Mo
over, we are going to extend it to polydisperse systems, u
the general results of the previous section. Such an exten
is, certainly, a hypothesis, which has yet to be proved
numerical simulations.

For definiteness we consider a dual system compose
electronically conducting~metal or semiconductor! and elec-
tronically nonconducting~insulator or ionic conductor! com-
ponents. For brevity, they will be called, hereafter, ‘‘meta
and ‘‘insulator,’’ respectively. In the problem of percolatio
through the metal subnetwork only the metal grains are
tive sites, so that it is convenient to concentrate on the m
subnetwork. Although the insulating grains are not sites
this subnetwork, they are certainly important for the pro
ability of establishing bonds between metal sites. Thus,
characteristics of the insulating component will influence
bonding matrix for the metallic subnetwork. The met
grains in the polydisperse mixture are not equivalent: th
have different radii. In terms of the general theory of t
preceding sections, the radius of a grain plays a role of co
Our first task is then to find out if this system can be d
scribed by the bonding matrix model, and, if yes, to elucid
the structure of the matrix.

A. A model for a particulate composite

We take a standard steepest descent model of the com
ite deposition process@2,4,13,15,16,6,9#. In this model gran-
ules fall down into a vessel one by one from random pla
above~see Fig. 3!. They hit the pile of grains, those that hav
fallen before, most probably at a single point. Although t
collision is assumed perfectly inelastic, a configuration
1-7
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which a newcomer grain touches the others at only one p
is unstable mechanically. The newcomer thus slides do
ward along the steepest descent path on the pile surface,
it touches the grains of the pile atthree points. Here the
sliding stops. These three contacts fix the position of
granule, and it is assumed to remain in this position,
affected by any new granules that could possibly fall on
of it later.

In this idealized model the packing geometry is not
fected by the type of grain~metal or insulator!. We thus may
treat the grains of both types on an equal footing and in
duce an overall grain-radius distribution~irrespective of the
grain sort!

n~r !5xmnm~r !1xini~r !, ~21!

wherexm andxi are the particle fractions of metal and ins
lator, respectively,

xm1xi51. ~22!

It is also convenient to introduce three different types
averaging: the averagings over size distributions of meta
insulating grains separately,

^~••• !&m[E
0

`

~••• !nm~r !dr,

~23!

^~••• !& i[E
0

`

~••• !ni~r !dr,

and overall averaging,

^~••• !&[E
0

`

~••• !n~r !dr5xm^~••• !&m1xi^~••• !& i .

~24!

FIG. 3. Illustration for the steepest descent sedimentation
cess~see text!.
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B. Statistics of coordination for a particulate composite

Every new grain adds exactly three new intergrain co
tacts to the system. Since each contact connects two g
ules, we conclude that the average number of contacts
granule is

Z0533256. ~25!

The next step is to determineZ(r )—the number of con-
tacts with arbitrary other grains that, on average, a grain
radiusr has.A priori we know only thatZ(r )>3, because
each grain has at least three contacts, required by mecha
stability.

A plausible assumption, proposed in Ref.@9# ~see also the
earlier work@7,5#!, is that the excessZ(r )23 is proportional
to the surface of the particle; thus

Z~r !235Ar2, ~26!

where the constantA can be found from the normalizatio
condition

^Z&5Z056. ~27!

As a result, one obtains

Z~r !53S 11
r 2

R2D , ~28!

where

R25^r 2&5xmRm
2 1xiRi

2 ~29!

is the overall average squared radius of the grains (Rm
2

[^r 2&m and Ri
2[^r 2& i being the average squared radii

metal and insulating grains, respectively!. Although the an-
satz ~26! has never been justified theoretically, numeric
simulations solidly support it, at least in the case when
distribution of sizes is not too broad.

It is, however, not enough to knowZ(r ) for determination
of the system properties. One needs to know how the p
ners contacting a given grain of radiusr 1 are distributed over
radii r 2. Such a distributionZ(r 1 ,r 2) should obey the obvi-
ous normalization condition

E
0

`

Z~r 1 ,r 2!dr25Z~r 1!. ~30!

Yet another ansatz, a mutiplicative one, also put forward
@9# ~see also@32#!, fixes the functional form ofZ(r 1 ,r 2). In
a slightly modified form—to fit our polydisperse case—it

Z~r 1 ,r 2!

Z~r 1!
}n~r 2!Z~r 2!, ~31!

which means that the fraction of contacts that link any fix
grain with other grains of given sizer 2 is proportional to
both the concentrationn(r 2) and the activityZ(r 2) of the
latter.

o-
1-8
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Substitution of~31! in the normalization condition~30!
gives the proportionality constant. As a result, one obtain

Z~r 1 ,r 2!5Z~r 1!Z~r 2!n~r 2!/Z0

5
3

2
n~r 2!S 11

r 1
2

R2D S 11
r 2

2

R2D . ~32!

For interpretation of the multiplicative ansatz~31! it is in-
structive to have in mind the following picture. Let us re
resent each grain of radiusr by an object withZ(r ) ‘‘termi-
nals.’’ These terminals tend to couple with similar termina
of other grains. A contact of grains is just a result of su
coupling. One can try to view the collection of all termina
of all grains as a sort of homogeneous uncorrelated
where each terminal chooses a partner for coupling at
dom. This picture~certainly it can only be approximatel
correct! immediately leads to the statistics of contacts d
scribed by formula~31!.

C. Percolative properties of a subsystem of metal grains

Let us now return to the problem of percolation throu
the metal subnetwork. We have to address the question: W
is the numberB(r 1) of bonds~i.e., contacts with other meta
grains! for a given metal particle of radiusr 1? What is the
distributionB(r 1 ,r 2) over the radiir 2 of the partners in the
above bonds? Using the formula~32!, and substituting in it
the concentration of metal pariclesxmnm(r 2) instead of the
overall concentrationn(r 2), we obtain

B~r 1 ,r 2!5
3xm

2
nm~r 2!S 11

r 1
2

R2D S 11
r 2

2

R2D , ~33!

B~r 1!5E B~r 1 ,r 2!dr25
3xm

2 S 11
r 1

2

R2D S 11
Rm

2

R2 D .

~34!

Thus, we conclude that the problem of percolation in
polydisperse particulate composite material can be redu
to a continuous variant of the bonding matrix model, with

b~r 1 ,r 2!5
3xm

2 S 11
r 1

2

R2D S 11
r 2

2

R2D . ~35!

Moreover, since the bonding matrix~35! is factorized, the
results of the corresponding subsection can be directly
plied. The activity of a metal grain of radiusr is

A~r !5A3xm

2 S 11
r 2

R2D , ~36!

and the partial percolation probabilities are

P~r !5WF l̃S 11
r 2

R2D G . ~37!

The functionW(x) is shown in Fig. 4. It was found numer
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cally from the functional equation~13! with the P(B) given
by Fig. 2~c!. The parameterl̃ in Eq. ~37! @its definition here
differs from l in Eq. ~17! by a factor ofA3xm/2# is an
appropriate solution of the nonlinear equation

l̃5
3

2
xmK WF l̃S 11

r 2

R2D G S 11
r 2

R2D L
m

~38!

obtained from Eq.~19!. The value ofl̃ depends on the con
centrationxm and on the distribution functionsnm(r ) and
ni(r ) ~the latter enters only throughR2).

Application of the percolation criterion~6! with the ex-
pression~20! for the invariantB gives

3

2
xmK S 11

r 2

R2D 2L
m

5Bcr . ~39!

Expanding the square and rearranging, writingxm5X, we
arrive at the equation

3X

2 H S 11
1

X1~12X!r2D 2

1
Dm

@X1~12X!r2#2J
5Bcr , Bcr'2, ~40!

which implicitly determines the dependence

xm
(cr)5X~r,Dm! ~41!

of the critical concentration of metal grainsxm
(cr) on the size

distribution functionsnm(r ),ni(r ) through two dimension-
less parameters: the asymmetry parameter

r25S Ri

Rm
D 2

[
^S& i

^S&m
, ~42!

where S is the area of the grain surface, and the relat
dispersion of metal grain surfaces,

FIG. 4. Plot of the universal functionW(x) for the problem of a
particulate composite@extracted from the data plotted in Fig. 2~c!
with the help of the functional equation~13!#.
1-9
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Dm5Rm
24^~r 22Rm

2 !2&m[
Š~S2^S&m!2

‹m

^S&m
2

. ~43!

Note that, to find the critical concentration, one needs
know only the two lowest moments of the surfaces distrib
tions, ^S&m and ^S2&m .

In the case of a mixture of two monodisperse compone
Dm50, and the result~40! reduces to the percolation crite
rion obtained by Bouvard and Lange@9#. The dispersion of
surface areas of metal grains diminishes the value of
thresholdxm

(cr) , i.e., it facilitates percolation. Indeed, for
fixed value of r the percolation thresholdxm

(cr) decreases
with increasingDm . On the other hand, the dispersion
surfaces of the nonconducting component is irrelevant
xm

(cr) , as the latter does not depend onD i . The effect of
dispersion on the percolation threshold is especially trans
ent in the symmetric case, considered in the next subsec

The symmetric case

In many practical cases the distribution functionsnm(r )
and ni(r ) do not differ much, so that an assumption of t
same size distribution for both types of particles,

nm~r !5ni~r !5n~r !, ~44!

may be considered a good approximation. Under this
sumption

r51, Dm5D i[D, ~45!

and Eq.~40! can easily be solved forX:

xm
(cr)5X~1,D![

1

3~11D/4!
. ~46!

Thus, in a polydisperse system (DÞ0) the onset of percola
tion through the metallic component occurs at a lower c
centration of metal than in a monodisperse one (D50).

What is the physical reason for this effect? To answer
question let us consider a system characterized by the d
bution functionn(r ) and a concentration slightly below th
percolation threshold:xm,xm

(cr)$n(r )%. It is easy to show
that it is possible to drive the system into the percolat
regime by a small variation of the distribution function. I
deed, suppose that we add to the system a small amou
small ‘‘doping’’ particles ~with a radiusr dop much smaller
that the sizer 0 characteristic for the initial distribution o
‘‘matrix’’ particles!; see Fig. 5. The new distribution functio
ñ(r ) is then given by

ñ~r !5n~r !1dn~r !,

where

dn~r !5q@d~r 2r dop!2n~r !#, ~47!

with small q. The doping particles will mostly reside in th
pores of the initial network; therefore the direct contacts
tween the matrix particles will not be affected by doping. O
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the other hand, the small doping particles will establish c
tacts both with the matrix~most often! and with each other
~rarely!. As a result, a small but finite number of newindirect
contacts between the matrix particles will be established
the doping ones, and this can lead to the onset of percola
On the other hand, the doping obviously leads to an incre
of dispersion:

D→D1dD, dD5q~11D!.0. ~48!

This case clearly demonstrates a correlation between
lowering of the percolation threshold and increase of the d
persion of particle sizes. The greater the dispersion of p
ticle sizes, the higher the density of the system; in a de
system there is, roughly, a hierarchy of bonds: the bo
between the biggest particles are almost unhindered by
smaller particles, while the latter provide some new bon
still smaller particles, again, contribute new bonds witho
affecting the old ones, etc. This idea is illustrated in Fig.

FIG. 5. Illustration of the question: Why does a diversificati
of particle sizes facilitate percolation?~a! A pattern with spheres of
comparable sizes;~b! the same, after doping with a fraction of muc
smaller spheres: one can see how additional bonds are establi
1-10
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V. CONCLUSION

The most striking practical result of this paper is Eq.~40!
for the percolation threshold in polydisperse composites
the rule that follows from it: the greater the dispersion
particle sizes, the lower the percolation threshold. Above
threshold the probability for a particle with sizer to belong
to the percolation cluster is described by formula~37!. For
the case of identical size distributions for both component
a mixture, the solution of Eq.~40! gives the simple law Eq
~46!. This law, and the basic Eq.~40!, are warranted atD/4
,1, i.e., they cannot cover orders of magnitude difference
.

m

er
no

-
b

e

n
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particle sizes. Since the derivation is based on a numbe
heuristic~although plausible! assumptions, a rigorous valid
ity criterion cannot be obtained from the theory, but shou
rather be verified by Monte Carlo simulations.

Equations~40! and ~37! were derived under certain as
sumptions which are fulfilled for a model of steepest desc
sedimentation~see Sec. IV A!. One may envisage other fab
rication processes, when these assumptions may not be
filled. It would be interesting to investigate whether oth
fabrication scenarios lead to modification of these equati
In all cases, it is most interesting to check the law Eq.~46!
for various composites.
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